On multipliers preserving convergence of trigonometric series almost everywhere
نویسندگان
چکیده
منابع مشابه
On radial Fourier multipliers and almost everywhere convergence
We study a.e. convergence on L, and Lorentz spaces L, p > 2d d−1 , for variants of Riesz means at the critical index d( 1 2 − 1 p )− 1 2 . We derive more general results for (quasi-)radial Fourier multipliers and associated maximal functions, acting on L spaces with power weights, and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformation...
متن کاملAlmost Everywhere Convergence of Series in L
We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.
متن کاملMean and Almost Everywhere Convergence of Fourier-neumann Series
Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...
متن کاملThe surprising almost everywhere convergence of Fourier-Neumann series
For most orthogonal systems and their corresponding Fourier series, the study of the almost everywhere convergence for functions in L requires very complicated research, harder than in the case of the mean convergence. For instance, for trigonometric series, the almost everywhere convergence for functions in L is the celebrated Carleson theorem, proved in 1966 (and extended to L by Hunt in 1967...
متن کاملPointwise Convergence of Trigonometric Series
We establish two results in the pointwise convergence problem of a trigonometric series [An] £ cne inl with lim Hm £ I bTck | = 0 |n|< -x. * Jn-»oo \k\-n for some nonnegative integer m. These results not only generalize Hardy's theorem, the Jordan test theorem and Fatou's theorem, but also complement the results on pointwise convergence of those Fourier series associated with known 1}-convergen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1968
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-30-1-111-120